Seasonal and Periodic Long Memory Models in the Inflation Rates

نویسندگان

  • Ben Nasr
  • Adnen BEN NASR
چکیده

This paper considers the application of long memory processes to describe inflation with seasonal behaviour. We use three different long memory models taking into account the seasonal pattern in the data. Namely, the ARFIMA model with deterministic seasonality, the ARFISMA model, and the periodic ARFIMA (PARFIMA) model. These models are used to describe the inflation rates of four different countries, USA, Canada, Tunisia, and South Africa. The analysis is carried out using the Sowell’s (1992) maximum likelihood techniques for estimating ARFIMA model and using the approximate maximum likelihood method for the estimation of the PARFIMA process. We implement a new procedure to obtain the maximum likelihood estimates of the ARFISMA model, in which dummies variables on additive outliers are included. The advantage of this parametric estimation method is that all parameters are estimated simultaneously in the time domain. For all countries, we find that estimates of differencing parameters are significantly different from zero. This is evidence in favour of long memory and suggests that persistence is a common feature for inflation series. Note that neglecting the existence of additive outliers may possibly biased estimates of the seasonal and periodic long memory models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonality and Forecasting of Monthly Broiler Price in Iran

The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropri...

متن کامل

The Effect of Macroeconomic Shocks on Inflation in Iran: A Vector Autoregressive Approach with Dynamic Parameters

Given the effects of inflation on the decline of household welfare and its impact on production and investment, identifying the factors affecting it in order to adjust inflation and achieve price stability is necessary. Therefore, using the TVP-FAVAR model, which differentiates the fluctuations in factors affecting inflation, we try to identify the effects of different shocks such as liquidity,...

متن کامل

Inflation and Cost Push in Iran's Economy

There have been two broad theories of inflation, namely the demand-pull theory of inflation (that is nowadays mainly the monetary theory of inflation) and the cost-push theory of inflation. The mainstream macroeconomics views inflation as a monetary phenomenon in the long run. Iran has experienced double-digit rates of inflation for about four decades. Our main aim is an explanation for the lon...

متن کامل

بررسی الزامات تورم یک رقمی در اقتصاد ایران

This paper examines the important factors in determining inflation and the requirements to achieve single-digit inflation in Iran. For this purpose, this study has implemented the theoretical foundations & empirical studies of inflation, the experience of transition for the countries with high inflation rates, economic conditions of Iran and the appropriate econometric model. As to be expected,...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006